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Acute phase reaction and protein turnover

A recent review published in the New England
Journal of Medicine Gabay (1999) gave the following
definition “The Acute-Phase Response, an important
pathophysiologic phenomenon, replaces the normal
homeostatic mechanisms with new set points that are
presumably contributing to defensive or adaptive capa-
bilities. The functions of these changes are highly vari-
able and diverse: some participate in initiating or
sustaining the inflammatory process, others modulate it,
and still others have adaptive roles”.

Under these conditions, the main metabolic changes
are:

• loss of muscle tone and a negative nitrogen balance,
• decreased gluconeogenesis,
• increased osteoporosis,
• increased hepatic lipogenesis and lipolysis in adipic

tissue,
• decreased lipoprotein lipase activity in muscle and

adipic tissue
• cachexia.

Moreover, the stimulation of transcription of acute
phase protein (APP) genes in the liver is incorporated
in the complex interchange of cytokines, growth fac-
tors and glucocorticoids hormones released during the
systemic defence reaction, in response to a trauma
(Fig. 1). Through the broad spectrum of their activi-
ties, this heterogeneous group of circulating proteins
assists the injured organism in restoring homeostasis

Summary. The diet of industrialised countries is usually rich in
amino acids, which are in part used as a source of calories. However,
metabolic alterations are observed in diseased patients and a prefer-
ential retention of Sulphurated Amino Acids (SAA) occurs during
the inflammatory response. Moreover, it has been demonstrated in
a model of an acute sepsis phase of rats that the metabolism of
Cysteine is modified. The liver converts Cysteine at a different ratio
of Sulphate to Taurine (Tau) i.e. the sulphate production decreases
while the Tau conversion increases. The Glutathione (GSH) con-
centration is greater in the liver, kidneys and other organs and the
Cysteine incorporation into proteins is higher in the spleen, lungs
and plasma (Acute Phase Proteins) while the Albumin level de-
creases. The pro-inflammatory cytokines such as Interleukin-1,
Interleukin-6 and TNF-α are the main initiators that alter protein
and amino acid metabolism.

Another important phenomenon is the impairment of Methionine
conversion to Cysteine during stress. For example, premature in-
fants or AIDS patients are capable of synthesizing Cysteine from
Methionine at a much lower rate. Thus, the metabolic flow through
the trans-sulphuration path may be inadequate to meet the Cysteine
demand under critical conditions.

In this complex picture, an SAA supply may contribute to an
immune system regulation.
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Introduction

The aim of this review is to describe the fate of SAA in
a general perturbation of the metabolism of amino
acids during stress conditions. We would like to em-
phasize that rules of biochemistry are altered during
inflammation, and that such findings can support the
need for an additional supply of SAA under inflamma-
tion conditions.
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by assuming a protective role. APPs accomplish this
by inactivating vasoactive, proteolitic and cytotoxic
molecules liberated from damaged tissues, and by ac-
cumulating phagocytic cells, and by participating in a
feedback control mechanism that prevents the over-
loading of the organism’s immune response.

These changes are induced by a complex intercellu-
lar signalling system whose main constituents are
inflammation-associated cytokines. Several cytokines,
particularly Interleukin-6, stimulate the production of
APP in response to varied stimuli.

The biochemical changes occurring during inflam-
mation also exert a large metabolic demand on amino
acid metabolism. The pro-inflammatory cytokines,
Interleukin-1, Interleukin-6 and Tumor Necrosis
Factor-alpha (TNF-α) are the main initiators that alter
protein and amino acid metabolism to support the
immune response. TNF-α release, is mainly involved
in determining muscle-wasting (Martin, 1991). In this
respect, the administration of Pentoxifylline (PX), an
inhibitor of TNF-α, has been recently studied in a
sustained rat model for studying the catabolic state of
sepsis (Breuillé, 1999). PX treatment reduces muscle
atrophy consequent to the infection. The same group
(Breuillé, 1993) reported that PX reduces the muscle
protein synthesis inhibition observed in the septic
acute phase, as previously demonstrated during
chronic sepsis using another phosphodiesterase inhibi-

tor as Amrinone (Jurassinski, 1995). These data are
consistent with the crucial role played by TNF-α in
regulation of muscle protein turnover. Other data
shows that IL-6 could directly activate muscle pro-
teolysis and especially the lysosomal and ATP-
ubiquitin-dependent pathways (Goodman, 1994;
Tsujinaka, 1996).

Hunter (1994) estimated that during major infec-
tions in humans, the amount of amino acids required
to produce, and maintain an increased circulation of
white blood cells and APP is approximately 45 g/d.
However, the supply from the peripheral tissue may
not always be able to match demands due the previous
dietary intake.

Thus, inflammation modifies the contribution of dif-
ferent organs to a protein synthesis in the whole body.
The protein shortage may therefore impair the acute
phase protein response in human and experimental
animals.

Some considerations on Cysteine biochemistry

A normal protein-rich diet provides the physiological
requirement of Cysteine for the turnover and synthesis
of the proteins needed by the organism. The absorp-
tion of Cysteine/Cystine (Daniels, 1982) by the intes-
tines, originated by a normal or a supplemented diet, is
practically total, and the excess of Cysteine is known
to be quickly catabolized.

Pyruvate and Taurine synthesis each account for a
significant fraction of Cysteine catabolism in mice and
rats; the relative contribution of Tau synthesis in mice
is higher (63% of total catabolism); at a low dosage of
Cystine (0.1 mol/kg expressed as Cysteine) and lower
(42%) of high dosage of Cysteine (2.5 mmol/kg), sug-
gesting a saturable catabolic path (Weinstein, 1988).
Taurine synthesis also predominates (68–83% of total
catabolism) in rats independently of the doses (Cho,
1984; Yamaguchi, 1973).

It has recently been reported that, after an oral ad-
ministration to rats, N-acetylcysteine (NAC), a pre-
cursor of Cysteine (Holdiness, 1991) is oxidised to Tau
and sulphate Waterfield (1996). The effect of a thrice-
daily oral administration of 200 mg NAC for 3/6 days
was investigated in two patients affected by a heredi-
tary gluthatione deficiency. In leukocytes, the GSH
concentrations were increased by 20–30%. In parallel,
the plasma levels, intracellular leukocytes and urinary
excretion of Tau were restored to a normal value
Martensson (1989). The metabolism of a high intrave-

Fig. 1. Some of the organs involved in Acute Phase Response are
represented. Brain is involved in fever, anorexia and synthesis
of neuroendocrine hormones as Corticotropin-releasing factor
(CRH) and Corticotropin (ACTH). The liver synthesises Plasma
Acute Phase Proteins and releases increased amount of GSH
and Tau. Proteolysis and decrease in protein synthesis have been
shown in muscle. Cytokines-network orchestrates the multi-organ
communication
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nous NAC dosage in patients treated prior to a liver
transplantation has recently been reported (Tauft,
1999). NAC is extensively catabolised to sulphate
and Tau just after the implantation of a new organ,
confirming the liver’s high capacity of metabolising
Cysteine excess even under severe stress.

In conclusion, under stable conditions any tissue
levels of free Cysteine and Cysteine equivalent are
ultimately regulated and limited by the reaction of
Cysteine catabolism (Weinstein, 1988).

The metabolism of Cysteine is modified
during stress

The amino acid intake occurs to a large excess in a
healthy condition, amino acids are therefore also used
as a source of calories. This means that the excess
Cysteine is metabolised to sulphate and Tau.

On the other hand, some degree of nutritional defi-
cit is observed even in the case of a brief infection
(Beisel, 1988). Acute Phase Response, with the
increased nutritional requirements of many organs
like the liver, is thought to induce of such a deficit
(Breuillé, 1994; Hasselgren, 1988).

Metabolic changes are observed in diseased patients
and a preferential retention of SAA occurs during an
inflammatory response. After fractures or burns, uri-
nary nitrogen excretion is enhanced to a greater extent
than sulphur excretion (Grimble, 1994).

The metabolism of Cysteine is modified during the
acute phase of sepsis, in rats infected with live Es-
cherichia coli (Malmezat, 1998). Sulphate production
is significantly lower, while a higher production of Tau
may come to play a protective role against oxidative
stress. GSH concentration is significantly greater in
the liver, kidneys and other organs. Finally, Cysteine
incorporation into protein is higher in the spleen,
lungs and in particular in whole plasma proteins while
albumin level decreases. This last effect is interpreted
as inducing a synthesis of APP. Finally, it has been
demonstrated that also the general Cysteine catabo-
lism is decreased in several tissues following infection
(Breuillé, 1996; Malmezat, 1998).

These data suggest an increased requirement for
Cysteine during infection (Breuillé, 1994; Malmezat,
2000b).

During an infection and generally under stress,
amino acids are released from peripheral tissues i.e.
muscles so as to act as nutrients for cells of the immune
system and for the synthesis of Tau, APP and GSH.

Within the liver APP, both GSH and Tau conse-
quently compete for the cellular sulphurated amino
acid supply.

The question arises whether incorporation and
metabolism of Cysteine into both of these end-
products during an inflammatory response, is equally
influenced by any changes in the dietary availability
of sulphurated amino acid (Grimble, 1998). It should
also be considered that the food intake is generally
decreased due to the anorexia induced by acute
inflammation.

Another aspect affecting the availability of SAA is
the impairment of Methionine conversion to Cysteine
in a stressed condition. Premature infants synthesise
GSH from Methionine (a process dependent on the
Cystathionase path) at a much lower rate than fully
developed infants (Vina, 1995).

The rate of Cysteine synthesis from Methionine was
found to be significantly higher in isolated hepatocytes
used in controls than in hepatocytes from rats suffer-
ing from surgical stress (Vina, 1992). This was likewise
observed during a sepsis in rats (Malmezat, 2000a).
Most recently, the same impairment has also been
reported in the case of AIDS patients (Sastre, 2001).
Not much is known about other conditions, but it is
likely that the conversion of Methionine to Cysteine
is generally impaired in a state of inflammation. The
metabolic flow through the trans-sulphuration path
may be inadequate to meet the Glutathione and
Cysteine requirement.

The use of SAA supplementation in animal models
of inflammation has been reported. In rats, an infiltra-
tion of inflammatory cells into the lungs, in response
to cytokines, was noted to occur in the absence of
Cysteine and Methionine in a low protein diet, and
was prevented by their addition to the diet (Grimble,
1992; Hunter, 1994). Dietary SAA adequacy
influences glutathione synthesis and glutathione-
dependent enzymes during the inflammatory response
to endotoxin and TNF-α (Hunter, 1997). In addition,
in rats a non-lethal dose of TNF-α becomes lethal if
the ability of the animal to increase and maintain GSH
synthesis is prevented by administration of diethyl-
maleate (Zimmerman, 1989).

All these findings evidence the existence of a
modified path of SAA biochemistry during inflamma-
tion and justify why Cysteine, which is a simple unes-
sential amino acid and present in a large excess in a
diet, may be viewed to a be a conditionally essential
agent.
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Taurine is not the end-product of catabolism of
sulphurated amino acids but Tau is endowed with a
protective effect

While the role of GSH is crucial in regulating cell
functions, such an important topic is not extensively
discussed here. In short, GSH performs many physi-
ological functions including antioxidant defence,
detoxification of xenobiotics, modulation of redox
regulated signal transduction, storage and transport of
Cysteine, regulation of cell proliferation, synthesis of
deoxyribonucleotide, regulation of immune response,
and regulation of leukotriene and prostaglandin me-
tabolism (Griffith, 1979; Kirsher, 1994; Droge, 1991;
Geggel, 1985).

The main metabolite of Cysteine i.e. Tau is not an
ineffective end-metabolite of sulphurated amino acid
(Surinder, 1986) but provides a pharmacological effect
(Stapleton, 1998). This action mechanism is not fully
understood, but has been shown to act as a detoxifier,
antioxidant and membrane stabiliser.

Tau is a constitutive element of the organism and
found in higher concentration in the lungs, heart and
inflammatory cells as neutrophil, which represents the
most abundant source of intracellular amino acids
(Timbrell, 1995; Wright, 1986; Fukuda, 1982).

Tau is released from inflamed tissues and pro-
inflammatory cells and, in particular, from the lungs
during inflammatory processes.

Inside the neutrophil and eosinophil, Tau reacts
with hypochlorous acid to produce the less aggres-
sive compound known as Taurine Chloramine
(TauCl) (Kim, 1996; Park, 1993). This is a physiologi-
cal mechanism meant to protect against the reactivity
of hypochlorous acid, without impairing the phagic
activity.

The TauCl function has been extensively reported
(Park, 1995, 1997; Marcinkiewicz, 1997, 1998).
TauCl exerts a dosage-related inhibitory action at a
micromolar concentration (0.1–1 mM) against the
release of a macrophage inflammatory mediator
(Superoxide Anion, Nitric Oxide, TNF, IL-6, and
PGE2). It is likely that TauCl inhibits the production
of nitric oxide and TNF by mechanisms involving tran-
scriptional and translational events, e.g. iNOS mRNA.

Park and Colleagues commented the role of TauCl
with the following words (Park, 1993): Considering
the temporal and spatial domains of the leukocyte
microenvironment during an inflammatory response,
the concentrations of Tau-Cl are indeed physiologic.

We show active transport of Tau-Cl into RAW 264.7
cells, inhibition of NO and TNF production by Tau-Cl,
and irreversible inhibition of NOS by Tau-Cl. These
data suggest that Tau-Cl (0.2–1.0 mM) may modulate
the localised inflammatory response at Tau-Cl concen-
tration that is physiologically relevant.

Our main interest is in the respiratory area. In this
contest, a great body of evidence is available; Tau is
known to protect against lung damage in animal mod-
els, such as during acute exposure to inhalation of
Nitrogen Dioxide, Bleomycin, Ozone, etc. (with an
emphasis on in vivo results, a selection of the pub-
lished results is given in a dedicated chapter in the
references).

Human airway secretion of bronchiectasis, chronic
bronchitis and cystic fibrosis patients were found
to have a high Tau concentration. In contrast, Tau
is undetectable in normal individuals. Tau may play
a role in protecting lung epithelial cells against
myeloperoxidase-derived oxidants (Cantin, 1994). The
action mechanism, underlying the protective effect of
Tau, could be related to the control exerted on the
chemical toxicity of HOCI synthesised by neutrophils
and eosinophils and to the anti-inflammatory effects
elicited by TauCl (to a minor extent by Tau itself),
versus the macrophage release of pro-inflammatory
species, e.g. NO, PGE2, TNF, cytokines, etc.

Other papers describe higher levels of Tau in the
lungs under pathological conditions (Witko-Sarsat,
1995; Hofford, 1997). Such evidence provides a strong
further support for the pulmonary protective role
played by Tau.

Recently, we have examined the effect of NAC on
Bleomycin-induced lung fibrosis in rats (Cortijo,
2001). NAC (3 mmol kg�1; oral) is given daily from
one week prior to a single intratracheal instillation of
Bleomycin (2.5 U kg�1) or saline instillation until 14
days after instillation. In this study, we confirmed that
oral NAC is useful for partially preventing the lung
damage produced by Bleomycin, but since NAC is a
Cysteine pro-drug, the metabolic fate of Cysteine has
been explored by examining whether oral treatment
with NAC increases the Tau levels in bronco-alveolar
lavage fluid (BALF), plasma and granulocytes. BALF
Tau levels are increased in groups treated with NAC
(Fig. 2A) but not exposed to Bleomycin, on the
other hand, Bleomycin alone also increases Tau levels
in BALF and NAC treatment produces a further
increase of BALF Tau levels. The same is found in
plasma. While Tau levels in plasma are not signifi-
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cantly increased by treating it with NAC, in rats unex-
posed to Bleomycin, a clear trend is observed (Fig.
2B). Finally, the Tau levels measured in granulocytes
does not evidence significant changes in rats, regard-
less of their exposure to Bleomycin or treatment with
NAC (Fig. 2C).

The study confirmed the increased Tau levels in
BALF and plasma of Bleomycin-treated rats. The ad-
ministration of NAC, a precursor of Cysteine, further
enhances the Tau levels in BALF and plasma of rats
receiving Bleomycin. Tau may therefore be contribut-
ing to the beneficial effect of NAC.

Conclusions

• The production of cytokines, APP, Tau and GSH
are strongly modified during inflammation.

• The evolution of inflammation is influenced by the
adequacy of amino acid availability in certain SAA.

• Because Cysteine participates in a very important
physiological balance, the potential cause of a
Cysteine deficit has been identified.

• The higher demand of Cysteine need may be crucial
in maintaining a constant level of GSH and Tau.

• Tau elicits a protective action under inflammatory
conditions, in particular in the lungs.

• The metabolism of SAA is deeply modified during
inflammation and Cysteine is a product-limiting step
in many biochemical approaches leading to an effec-
tive response.
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